4721 Core Mathematics 1

1 (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{4}-2 x^{-3}$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=20 x^{3}+6 x^{-4}$	B1 M1 A1 3 M1 $\begin{array}{r}\text { A1 } 2 \\ \\ \hline 5\end{array}$	$\begin{aligned} & 5 x^{4} \\ & x^{-2} \text { before differentiation or } k x^{-3} \text { in } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { soi } \\ & -2 x^{-3} \end{aligned}$ Attempt to differentiate their (i) - at least one term correct cao
2	$\begin{aligned} & \frac{(8+\sqrt{7})(2-\sqrt{7})}{(2+\sqrt{7})(2-\sqrt{7})} \\ & =\frac{9-6 \sqrt{7}}{4-7} \\ & =-3+2 \sqrt{7} \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \\ & 4 \end{array}$	Multiply numerator and denominator by conjugate Numerator correct and simplified Denominator correct and simplified cao
3 (i) (ii) (iii)	$\begin{aligned} & 3^{-2} \\ & 3^{\frac{1}{3}} \\ & 3^{10} \times 3^{30} \\ & =3^{40} \end{aligned}$	B1 1 B1 1 M1 A1 2 4	3^{30} or 9^{20} soi
4	$\begin{aligned} & y=2 x-4 \\ & 4 x^{2}+(2 x-4)^{2}=10 \\ & 8 x^{2}-16 x+16=10 \\ & 8 x^{2}-16 x+6=0 \\ & 4 x^{2}-8 x+3=0 \\ & (2 x-1)(2 x-3)=0 \\ & x=\frac{1}{2}, \quad x=\frac{3}{2} \\ & y=-3, \quad y=-1 \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { M1dep* } \\ & \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \\ & 8 \\ & 6 \end{aligned}$	Attempt to get an equation in 1 variable only Obtain correct 3 term quadratic (aef) Correct method to solve quadratic of form $a x^{2}+b x+c=0 \quad(b \neq 0)$ Correct factorisation oe Both x values correct Both y values correct or one correct pair of values www B1 second correct pair of values B1

$5 \quad \text { (i) }$ (ii)	$\begin{aligned} & \left(2 x^{2}-5 x-3\right)(x+4) \\ & =2 x^{3}+8 x^{2}-5 x^{2}-20 x-3 x-12 \\ & =2 x^{3}+3 x^{2}-23 x-12 \end{aligned}$ $\begin{aligned} & 2 x^{4}+7 x^{4} \\ & =9 x^{4} \end{aligned}$ 9	A1 A1 3 B1 B1 2	Attempt to multiply a quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^{3} term) Expansion with no more than one incorrect term $2 x^{4}$ or $7 x^{4}$ soi www $9 x^{4} \text { or } 9$
$6 \quad$ (i) (ii) (iii)	 Translation Parallel to y-axis, 5 units $y=-\sqrt{\frac{x}{2}}$	B1 2 B1 B1 2 M1 A1 $\quad \begin{array}{r}2 \\ 6\end{array}$	One to one graph only in bottom right hand quadrant Correct graph, passing through origin $\begin{aligned} & \sqrt{2 x} \text { or } \sqrt{\frac{x}{2}} \text { seen } \\ & \text { cao } \end{aligned}$
$7 \quad \text { (i) }$ (ii)	$\begin{aligned} & \left(x-\frac{5}{2}\right)^{2}-\left(\frac{5}{2}\right)^{2}+\frac{1}{4} \\ & =\left(x-\frac{5}{2}\right)^{2}-6 \\ & \left(x-\frac{5}{2}\right)^{2}-6+y^{2}=0 \\ & \text { Centre }\left(\frac{5}{2}, 0\right) \\ & \text { Radius }=\sqrt{6} \end{aligned}$	M1 A1 3 B1 B1 B1 $\mathbf{6}$	$\begin{aligned} & a=\frac{5}{2} \\ & \frac{1}{4}-a^{2} \\ & \text { cao } \end{aligned}$ Correct x coordinate Correct y coordinate

$\begin{array}{ll} \hline 8 & \text { (i) } \end{array}$ (ii)	$\begin{aligned} & -42<6 x<-6 \\ & -7<x<-1 \\ & \\ & x^{2}>16 \\ & x>4 \\ & \text { or } x<-4 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & 3 \\ & \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \\ & 6 \end{array}$	```2 equations or inequalities both dealing with all 3 terms -7 and -1 seen oe \(-7<x<-1\) (or \(x>-7\) and \(x<-1\)) \(\pm 4\) oe seen \(x>4\) \(x<-4\) not wrapped, not 'and'```
$9 \quad$ (i) (ii) (iii)	$\begin{aligned} & \sqrt{\left({ }^{-} 1-4\right)^{2}+(9-)^{2}} \\ & =13 \\ & \left(\frac{4++^{-} 1}{2}, \frac{-3+9}{2}\right) \\ & \left(\frac{3}{2}, 3\right) \\ & \text { Gradient of } A B=-\frac{12}{5} \\ & y-3=-\frac{12}{5}(x-1) \\ & 12 x+5 y-27=0 \end{aligned}$	M1 A1 2 M1 A1 2 B1 M1 A1 $\begin{array}{rr}\text { A1 } \\ \\ & 8\end{array}$	Correct method to find line length using Pythagoras' theorem cao Correct method to find midpoint Correct equation for line, any gradient, through (1, 3) Correct equation in any form with gradient simplified $12 x+5 y-27=0$
10 (i) (ii) (iii) (iv)	$\begin{aligned} & (3 x+7)(3 x-1)=0 \\ & x=-\frac{7}{3}, x=\frac{1}{3} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=18 x+18 \\ & 18 x+18=0 \\ & x=-1 \\ & y=-16 \end{aligned}$ $x>-1$	M1 A1 A1 3 M1 M1 A1 A1 ft 4 B1 B1 B1 3 B1 1 11	Correct method to find roots Correct factorisation oe Correct roots Attempt to differentiate y Uses $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Positive quadratic curve y intercept (0, -7) Good graph, with correct roots indicated and minimum point in correct quadrant

